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Obligatory Outline Thing

• Crypto 102
• Building a Model
• Useful Tools
• (Vague) Goals
• Crypto 114 (Cryptanalysis)
• Death of a Round Function
• The Punchline
• Rijndael

Q: How many cryptographers does it take to change a light bulb?
A: XIGHCBS
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Block Ciphers

• Purpose of Cryptography: Turn large secrets into small ones
• Main Jargon: cipher, plaintext, ciphertext, key
• FD(FE(x, kE), kD) = x

• Main distinction: Symmetric vs. Asymmetric

Properties of Symmetric Key Ciphers: kE = kD, brute force
obfuscation of data by repeated application of basic computer
operations, security derived from complexity, key sizes range
from 128-256 bits typically

, FAST!

Properties of Asymmetric (Public) Key Ciphers: kE 6= kD,
typically based on mathematical “trapdoor" functions, security
derived from difficulty of certain math problems, key sizes range
from 1024-2048 bits typically

, SLOW!
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Symmetric Key Block Ciphers

• Structured in “rounds"
• Rounds often identical
• Round keys derived from main

key by use of a “key schedule"
• Structure allows the construc-

tion of a somewhat simple
round function which is applied
many times to achieve total
plaintext obfuscation

• FE(x, k) = Rr(Rr−1(...(R1(x, k1)...), kr−1), kr)
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Round Structure

• Several linear “diffusion" steps
• Key addition (also linear)
• Nonlinear substitution “confu-

sion" step (S-box)

R(x) = L2(F (L1(x) + k))
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Building a Model

• We want to cleanly represent the component functions
• All act on fixed-length binary strings
• Dominant operation: exclusive or (xor), aka bitwise addition

without carry

• Option: Vector space over Z2 has the correct + operator
• Option: The group Z2 ⊕ Z2 ⊕ ... ⊕ Z2, pretty much the same

thing as above
• Option: The field GF(2n). Behaves exactly like the two

previous options under the + operation, but also has the
added machinery of a × operator, which gives us access to
nonlinearity.

• Winner: The Field! (Fields are awesome.)
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Multiplication on GF(2n)

• So what IS × on GF(2n)?
• Polynomial multiplication! (clearly...)
• Change representations from n-dimensional vectors to

degree-n − 1 polynomials:

(a0, a1, ..., an−1) → a0 + a1x + a2x
2 + ... + an−1x

n−1

• The multiplication operation is defined by an irreducible
polynomial p(x) of degree n. a × b = ab (mod p).

• This is a Big Deal. It gives us a wealth of additional
functions applied to what were previously just vectors.

• Of particular interest to us are power functions applied to
these polynomials.

• Note that on GF(2n), squaring is a linear operation.
((a + b)2 = a2 + b2) (Tell me that’s not fun to say.)
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Functions on GF(2n)

• In general: F (x) : GF(2n) → GF(2m)

• Usually m = n or m = 1

• When m = n, usually invertible (a permutation of GF(2n))
• When m = 1, F (x) is called a boolean function, and is

usually denoted with a lower-case function name.
• The general case can be described in terms of Boolean

functions:

F (x) = (f1(x), f2(x), f3(x), ..., fm(x))

(Each boolean function provides a single ‘bit’ of the total output.)
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Boolean Functions

f(x) : GF(2n) → GF(2)

• Linear boolean functions: If ∃t ∈ GF(2n) such that
f(x) = t0x0 + ... + tn−1xn−1 = tTx.

• Affine boolean functions: If ∃t ∈ GF(2n), b ∈ GF(2) such
that f(x) = t0x0 + ... + tn−1xn−1 + b = tTx + b.

• There are thus 2n linear boolean functions, 2n+1 affine
boolean functions, and 22n boolean functions on GF(2n).

• Referred to by Ln, An, and Bn, respectively.
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Distance on Bn

d(f, g) = #
{

x ∈ GF(2n) : f(x) 6= g(x)
}

This is called the hamming distance, and may be recognizable
as the taxicab metric.

d(f,G) = min{d(f, g) : g ∈ G}.

gives us the standard distance-to-sets capability. We can then
use this to define the nonlinearity of boolean functions:

N (f) = d(f,An)

Eventually we’ll want a nonlinearity definition for non-boolean
functions as well, but we need more information in order to
choose a good one.
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(Carpenter’s?) Toolbox

We need some stuff in the way of tool functions before we can
proceed to the juicy stuff. We’ll start with the trace:
Definition. The (field) trace of x ∈ GF(2n) is a mapping from GF(2n) into
itself, given by

Tr(x) =
n−1
∑

i=0

x2i

.

• For all x ∈ GF(2n), Tr(x) ∈ {0, 1}.
• For all x, y ∈ GF(2n), Tr(x + y) = Tr(x) + Tr(y).
• For all x ∈ GF(2n), Tr(x2) = (Tr(x))2 = Tr(x).

The set of functions {x 7→ Tr(ωx) : ω ∈ GF(2n)} is exactly Ln.
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The Toolbox II: Revenge of the Walsh Transform

Definition. The Walsh transform w(f) of f ∈ Bn is defined to be:

(w(f))(t) = F̂(t) =
∑

x∈GF(2n)

(−1)f(x)(−1)tTx, t ∈ GF(2n).

The Walsh transform is essentially the Fourier transform on
GF(2n). (Note that for integer inputs, all that eπix stuff becomes
(−1)x.)

Most of the standard Fourier stuff still plays nice, including the
Convolution Theorem and Parseval’s Theorem, which get used
in the bowels of a few proofs, but I’ll spare you for the time being.
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The Walsh Transform and Nonlinearity

Why do we care about the Walsh transform?

I’m glad you
asked! Let F̂ be the Walsh transform of f . Then

F̂(t) =
∑

x∈GF(2n)

(−1)f(x)(−1)tTa =
∑

x∈GF(2n)
f(x)=tTx

(1) +
∑

x∈GF(2n)
f(x)6=tTx

(−1)

The Walsh transform is directly related to the distance of a
function from the linear functions. By some minor manipulation,
we get that the distance of a boolean function f from the set of
affine boolean functions is

d(f,An) = 2n−1 −
1

2
max

t∈GF(2n)
|F̂(t)|

This is an alternate way to calculate the nonlinearity of f !
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What are we doing again?

We are after a secure S-box function. To get this, we need to:
• Determine what being secure means
• Generate criteria for a viable function
• Find a function that has those criteria in spades

No sweat, right?

We’ll begin by studying the major attacks against S-box
functions.
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Cryptanalysis

“The best system is to use a simple, well understood algorithm
which relies on the security of a key rather than the algorithm
itself. This means if anybody steals a key, you could just roll
another and they have to start all over."

– Andrew Carol

All the security in a cipher should be in the secrecy of the key.
It is bad practice to rely on, for instance, the secrecy of the
algorithm used, or the particular settings, or even the secrecy of
the plaintext.

As such, we cede the attacker full knowledge of the cipher, as
well as the ability to input values into it and see what outputs are
generated. This is called a known plaintext attack.

The goal of the attacker, then, is to utilize a large pool of (input,
output) pairs to recover the key (or all the round keys). To be an
effective attack, the attacker should use fewer encryptions than
a brute-force search of the keyspace would require.
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Linear Cryptanalysis

• The first of two attacks on the S-box function S(x) we’ll
consider.

• Goal: a ∈ GF(2n), b ∈ GF(2m) such that

aTx = bTS(x) (mod 2)

holds with probability 1
2 + ε

• The larger in magnitude ε is, the better the linear
approximation.

• Extend from S(x) to to the whole nonlinear function F (x),
and then to the round function R(x), including the key
addition.

• End result:
dTk = aTx + bTR(x) (mod 2)
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Differential Cryptanalysis

• Now we look for correlations between input and output
differences

• Given inputs x1, x2 ∈ GF(2n), and outputs
y1 = S(x1), y2 = S(x2) ∈ GF(2m), calculate

x′ = x1 + x2 y′ = y1 + y2

• Given a round input and output difference, push inward so
that you’re as close to the key and nonlinear function as
possible.

• Only some input differences will be possible, given a known
output difference. Each will suggest a possible key.

• repeat the test with varying input/output differences. The
real key will be the one suggested by all tests.
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Bob

• Toy round function.
• R(x) : GF(25) → GF(25)

• R(x) = ST (x + k)

• No linear diffusion functions,
since we’re not really
interested in them.

• Put on your black hats, we’re
about to break this thing.

• (Don’t tell anyone, but the key
we’re trying to recover is actu-
ally 10101)
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Definition of ST

Definition of ST (lookup table):
ST (00000) = 01001 ST (00001) = 01100 ST (00010) = 10101

ST (00011) = 01101 ST (00100) = 00110 ST (00101) = 10100

ST (00110) = 00010 ST (00111) = 11001 ST (01000) = 10110

ST (01001) = 01110 ST (01010) = 11110 ST (01011) = 11010

ST (01100) = 01011 ST (01101) = 11100 ST (01110) = 00011

ST (01111) = 10111 ST (10000) = 00111 ST (10001) = 10010

ST (10010) = 01111 ST (10011) = 00001 ST (10100) = 11000

ST (10101) = 00101 ST (10110) = 11101 ST (10111) = 10000

ST (11000) = 00100 ST (11001) = 10011 ST (11010) = 01010

ST (11011) = 11111 ST (11100) = 11011 ST (11101) = 00000

ST (11110) = 01000 ST (11111) = 10001
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Bob vs Linear Cryptanalysis

• Looking for a good aTx = bTST (x) approx.
• (Arbitrarily) choose b = 10000 (only paying attention to the

top-order bit in the output)
• Partial table of information for various a:

d(bTST (x), 10001Tx) = 16 w(bTST )(10001) = 0

d(bTST (x), 10010Tx) = 14 w(bTST )(10010) = 4

d(bTST (x), 10011Tx) = 14 w(bTST )(10011) = 4

d(bTST (x), 10100Tx) = 18 w(bTST )(10100) = −4

d(bTST (x), 10101Tx) = 26 w(bTST )(10101) = −20

d(bTST (x), 10110Tx) = 12 w(bTST )(10110) = 8

So d(10000TST (x), 10101Tx + 1) = 32 − 26 = 6

Thus 10000TST (x) = 10101Tx + 1 with probability 81.25%
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Bob vs Linear Cryptanalysis II

So, we have an approximation for ST (x):

10000TST (x) = 10101Tx + 1

But this can be extended to an approximation for the full round,
since the input to the S-box is really x + k, where x is the round
input. The approximation then becomes:

10101Tk = 10000TR(x) + 10101Tx + 1

Which still holds with probability 81.25%

So, let’s throw some inputs at this and see if a trend emerges.
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Bob vs Linear Cryptanalysis III

Affine approximation: 10101Tk = 10000TR(x) + 10101Tx + 1

x R(x) 10101Tx 10000TR(x)

01001 11011 1 1
00001 11000 1 1
00000 00101 0 0
00010 10000 0 1
11111 11110 1 1

These five x values suggest 10101Tk = 1 80% of the time, so it is
likely that the parity of the first, third, and fifth bits of k is odd. If
we had constructed other approximations, we could have
recovered more information from the same data and recovered
the full key (5 key bits would require 5 ind. approximations).
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Why Bob Broke

Bob fell to our attack because we were able to construct linear
approximations of his nonlinear component. The form this
approximations took tells us what kind of nonlinear definition we
need.

• A “linear combination of input/output bits" is a boolean
function, so the nonlinearity of functions in general should
be definable in terms of nonlinearity of boolean functions.

• Specifically, we want no linear combination of the output bits
of S to be near to an affine boolean function. So!

Definition. For function F : GF(2n) → GF(2m) the nonlinearity of F is:

N (F ) = min
b∈GF(2m)

b6=0

N (bTF )

Large N is a requirement for a secure S function.
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Bob vs Differential Cryptanalysis

Possible key values:
10100
10101
00000
00001

Test case 1: x = 11000, x′ = 00001

• R(x) = 11100, R(x + x′) = 01011 → y′ = 10111

• Pairs xor table says four possible values for x+k:
◦ 01100, 01101, 11000, 11001

• Each suggests a possible key value:
◦ 10100, 10101, 00000, 00001

Key recovered! k = 10101

Cryptography: – p.24/32



Bob vs Differential Cryptanalysis

Possible key values:
10100
10101
00000
00001

Test case 1: x = 11000, x′ = 00001

• R(x) = 11100, R(x + x′) = 01011 → y′ = 10111

• Pairs xor table says four possible values for x+k:
◦ 01100, 01101, 11000, 11001

• Each suggests a possible key value:
◦ 10100, 10101, 00000, 00001

Key recovered! k = 10101

Cryptography: – p.24/32



Bob vs Differential Cryptanalysis

Possible key values:
10100
10101
00000
00001

Test case 2: x = 01001, x′ = 01110

• R(x) = 11011, R(x + x′) = 01111 → y′ = 10100

• Pairs xor table says four possible values for x+k:
◦ 00110, 01000, 10010, 11100

• Each suggests a possible key value:
◦ 01111, 00001, 11011, 10101

Key recovered! k = 10101

Cryptography: – p.24/32



Bob vs Differential Cryptanalysis

Possible key values:
10100
10101
00000
00001

Test case 2: x = 01001, x′ = 01110

• R(x) = 11011, R(x + x′) = 01111 → y′ = 10100

• Pairs xor table says four possible values for x+k:
◦ 00110, 01000, 10010, 11100

• Each suggests a possible key value:
◦ 01111, 00001, 11011, 10101

Key recovered! k = 10101

Cryptography: – p.24/32



Bob vs Differential Cryptanalysis

Possible key values:
10100
10101
00000
00001

Test case 3: x = 01100, x′ = 01010

• R(x) = 10011, R(x + x′) = 00001 → y′ = 10010

• Pairs xor table says two possible values for x+k:
◦ 10011, 11001

• Each suggests a possible key value:
◦ 11111, 10101

Key recovered! k = 10101
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Poor Bob

• Alas, Bob couldn’t resist this attack either.
• It is less clear, however, how one would resist it.
• In fact, the attack is not resistable on single rounds.

Resistance must come from making it difficult to chain the
attacks together to leverage against the full cipher.

• The details are obnoxious.
• The only way to prevent this attack from being successful is

in keeping correlations between input and output
differences as low as possible.

• This makes it difficult to build “differential trails" through the
whole cipher, and saves individual rounds from falling to the
attack.
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A New Hope

• For Bob to resist this attack, given an input difference
x′∈ GF(2n), there should not be very many x ∈ GF(2n) that
lead to the same output difference y′∈ GF(2m).

• This is formalized in the concept of differential uniformity:

Definition. A function F : GF(2n) → GF(2m) is called differentially
δ-uniform if, for all x′ ∈ GF(2n), y′ ∈ GF(2m), x′ 6= 0,

#{x ∈ GF(2n) : F (x + x′) + F (x) = y′} ≤ δ

Small δ is a requirement for a secure S function.
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Moving Right Along...

So, Bob is doomed. His randomly-generated ST function was
not suitable. But we’ve learned from his mistakes. Our next
S-box will be based off of a function that satisfies the following
conditions:

Goal A. A suitable S-box function S : GF(2n) → GF(2m) should have the
property that N (S) is maximal or near-maximal. Specifically, N (S) should
be close to the upper bound 2n−1 − 2

n

2
−1.

Goal B. A suitable S-box function S : GF(2n) → GF(2m) should be
differentially δ-uniform for as small a δ as possible.

Now we’re getting somewhere!
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And the Winner is...

There are four big hurking proofs behind the following, but the
margin is... you know.

Proposition. Let F (x) = x2k+1 for x ∈ GF(2n). Let s = gcd(k, n). If F
is a permutation, then N (F ) = 2n−1 − 2

n+s

2
−1 and F is differentially

2s-uniform.

Proposition. Let F (x) be the inversion function, defined by F (x) = x−1 for
x 6= 0 and F (0) = 0. Then N (F ) ≥ 2n−1 − 2

n

2 and F is differentially
4-uniform.

The cipher C∗ is based on the power functions given above.
Rijndael is based on the inversion function.
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Did Someone Say Rijndael?

• This is what we’ve been
waiting for

• 1970s: The first public
encryption standard: DES

• 1993: DES obsolete- possible
to search the full 56-bit
keyspace with specialized
hardware in hours

• 1997: NIST releases design
requirements for a
replacement cipher: AES

• Five finalists, all highly secure,
state of the art: MARS, RC6,
Rijndael, Serpent, Twofish

• 2000: Rijndael wins!
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Pronounced Just Like It’s Spelled

R(x) = L2(L1(F (x))) + k

Criteria for Rijndael’s S function:
• Invertibility

• Minimization of the largest
non-trivial correlation between
linear combinations of input
bits and linear combinations of
output bits

• Minimization of the largest
non-trivial value in the xor
table

• Complexity of its algebraic
expression in GF(28)

• Simplicity of description
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Math Trumps Black Magic

S(x) = S2(S1(x)) : GF(28) 7→ GF(28)

• S1 is the inversion function we just described under the
modulus x8 + x4 + x3 + x + 1

• S2 is an invertible affine mapping p(x) 7→ q(x)

q(x) = (x7+x6+x2+x)+p(x)(x7+x6+x5+x4+1) (mod x8+1).

• S(x) is differentially 4-uniform
• N (S) ≥ 27 − 24 = 112, which is very close to the upper

bound of 27 − 23 = 120.
• These properties, combined with the level of diffusion in the

linear functions, and the number of rounds, make Rijndael
provably secure against linear and differential cryptanalysis.
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The End

The End

...and there was much rejoicing...
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