
CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC

PAUL CARR

1. Introduction

Cryptography is the process of turning large secrets into small ones. The
basic idea is to use a short, fixed-length key to turn an arbitrarily large
message into a similarly-sized chunk of unintelligible data in such a way
that by possessing both the gibberish and the key, one can reconstruct the
original message. The problem of moving a potentially very large message
between two people securely is then reduced to moving a small key. In
some algorithms, the encrypting and decrypting key are different, and this
problem is removed entirely. These special methods are called asymmetric

or public key algorithms.
Many of these algorithms, not surprisingly, are based on mathematical

concepts. Elliptic curves, discrete logarithms, and products of large prime
numbers are the foundations of several. These algorithms, particularly RSA,
are regularly invoked in number theory, abstract algebra, and similar classes
as real-world applications of particular concepts. The downside of the asym-
metric key algorithms, however, is their relative slowness compared to other
cryptographic algorithms. They also typically require significantly larger
keys.

The workhorses of cryptography are the symmetric key algorithms, which
generally make use of only a handful of very basic, very fast, computer func-
tions, particularly exclusive or (xor), which is bitwise addition modulo
2, left and right shifts (multiplication or division by powers of two, with
truncation), and small lookup table function representations. These algo-
rithms are not based on simple mathematical results, but instead attempt
to use these small, rapid operations in a large number of iterations to obfus-
cate the message. With the exception of lookup tables, called substitution

boxes (or S-boxes, for short), all of these operations are linear, and thus
a great deal of any algorithm’s security is predicated on choosing good S-
boxes. In general this has been done by generating random lookup tables,
and throwing out any that are vulnerable to known attack techniques. More
recently, however, mathematical rigor has been brought to this process, and
the most significant result has been the selection of an algorithm called Rijn-
dael, designed in this way, as the new US government Advanced Encryption
Standard (AES), primarily based on their design methodology.

Date: February 27, 2005.

1

2 PAUL CARR

We will attempt to develop the tools and concepts used in the quan-
tification of design goals for the nonlinear S-box function, consider several
satisfactory S-boxes, and then look at what, specifically, the creators of
Rijndael decided upon.

2. Anatomy of a Cryptographic Algorithm

We must outline some terminology and jargon before proceeding with the
good stuff, so settle in.

Plaintext, ciphertext, and key are the three variables that our func-
tions are going to be acting on, and inhabit the domains and ranges in var-
ious arrangements. When we are interested in making a message or other
chunk of data unreadable by malicious creatures, we chop it up into blocks

of plaintext: binary strings of a particular length. Then we secure each block
individually, using a key (also a binary string). Once a block of plaintext is
secured (or encrypted), it becomes a block of ciphertext (it is enciphered,
or unreadable). Possession of a key grants the ability to decipher (decrypt)
the ciphertext and recover the plaintext.

A cipher consists of a description of an encrypting function, a decrypting
function, and all the options that determine various characteristics, particu-
larly the block size and the key size. For instance, the DES cipher can be run
with a key length of either 40 or 56 bits. The shorter key makes encrypting
and decrypting faster, but easier to break. Note that ciphers do not have
to act strictly on blocks- those that do are called block ciphers. Once the
options are set, we end up with a function for encrypting and another for
decrypting.

So now we move to what makes up an encrypting function or a de-

crypting function. Such a function maps two inputs to one output. The
inputs to the encrypting function FE are a block of plaintext x and a key
k, and the output is a block of ciphertext y. The inputs to the decrypting
function FD are y and k, and the output is x. Thus

FD(FE(x, k), k) = x.

So, for a fixed value of k, FD and FE are inverses of one another. We call
these functions keyed.

FD and FE are fairly elaborate and contain many individual components
which are also functions. The main units inside these functions are called
rounds. The general structure of a block cipher is some kind of initial
function, then a round function applied a number of times iteratively, and
finally some kind of concluding function. This design choice is based to
some extent on efficiency constraints, but it also clearly has ramifications
for security. The round function also takes a block of input and a key and
generates a block of output. The key for each round is typically different,
and derived from the main algorithm key in such a way that knowledge of
any number of round keys does not disclose any information about any other

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 3

round key. It may be said that they are (or can be closely approximated by)
independent random variables, from a statistics standpoint.

A round function also contains individual component functions. Typically
these serve two purposes: confusion and diffusion. The goal of confusion
is to make it difficult to determine an input to a round function, given an
output. This is usually carried out by a single nonlinear invertible function,
the S-box. The goal of diffusion is to make each output bit depend on as
many input bits as possible. This is carried out by a series of linear functions.

It is clear, then, that the decrypting function will be built up in a similarly
piecewise fashion, involving the inverse of each of the pieces of the encrypting
function.

3. Building a Model

Now we need a model to represent this situation. Clearly the dominant
behavior is that of functions acting on spaces. What spaces, then? Plain-
texts, ciphertexts, and keys are all strings of binary digits of specific lengths.
Integers, then. But not all integers, only those on the interval [0, 2n − 1],
where n is the number of bits allowed in a block, or the key length, depend-
ing on which object we’re talking about. We also need operations on these
numbers. We can introduce addition, and make it closed under it by taking
all sums modulo 2n, and thus create a group. However, the most common
interaction between strings of bits in cryptography is not plus, but exclusive
or (xor), which is a bitwise operation, adding each of the strings together,
bit by bit, modulo 2. Using xor as our +, we retain group structure. Xor
is also linear. This bitwise addition suggests a vector space, specifically an
n-dimensional vector space over Z2 = {0, 1}. This gives us a strong handle
on all linear functions on blocks of plaintext, ciphertext, and keys, in the
form of transformation matrices.

Most of the functions in a cipher are linear, but not all. We need other
operations. Since we’re already playing with groups, it is natural to extend
our gaze to rings, or fields. In fact, Galois Fields offer a very nice representa-
tion for this situation. GF(2n) is a finite field whose contents are objects of
the form {(a0, a1, ..., an−1) : ai ∈ Z2}, where the + operation is carried out
independently on each variable, mod 2. This describes n-bit binary strings
under xor exactly, and grants us the additional tool of a multiplication op-
erator which offers the possibility of nonlinearity.

So what is multiplication in GF(2n)? We change representations from
vectors to polynomials: (a0, a1, ..., an−1) becomes

a0 + a1x + a2x
2 + ... + an−1x

n−1.

To multiply two polynomials, we must first choose an irreducible polynomial
p of degree n to define the multiplication operation on our field. We then
define the product of a = (a0, a1, ..., an−1) and b = (b0, b1, ..., bn−1) to be

ab (mod p).

4 PAUL CARR

That is, find polynomials q and c, with the degree of c less than n, such
that ab = qp + c (using, for instance, the Euclidean algorithm). Then, the
product of a and b in GF(2n) is defined to be c.

For each positive integer n there are one or more irreducible polynomials
to choose from, but the choice is not particularly important for our purposes-
the fields determined by each option are all isomorphic.

We can use this multiplication operation to define functions on GF(2n)
that are nonlinear, in various ways. Of particular interest for our purposes
are power functions, such as f(a) = a3 = a(x) · a(x) · a(x).

It should be noted in passing that polynomial addition behaves identically
to our previous description of vector addition, which we already decided
behaved identically to the xor operation, on elements of GF(2n). So, the
polynomial description of GF(2n) is sufficient to describe everything we’re
working with. However, when dealing with linear functions we will drop
back to vector spaces sometimes, when it makes for a clearer descriptive
framework.

4. Functions on GF(2n)

So let’s figure out some things about functions on GF(2n). It is con-
venient to talk about boolean functions first. These are functions from
GF(2n) to GF(2), that is, functions that output either zero or one. So,
among boolean functions, what categories are interesting? Linear, certainly.
A linear boolean function can be defined completely by a vector in GF(2n):
f(x) = tTx = t0x0 + ...+ tn−1tn−a. It can be looked at as a matrix transfor-
mation from n dimensions to 1 dimension, or as a dot product. From linear
we can extend naturally to affine: just add a zero or a one to the result.
So if a linear boolean function can be defined by an n-dimensional vector,
an affine boolean function can be defined by an (n+1)-dimensional vector.
Let’s formalize this:

Definition 4.1. A function f from GF(2n) to GF(2) is called a boolean

function. If f can be expressed as f(x) = tTx for some t ∈ GF(2n), then it
is called a linear boolean function. If f can be expressed as f(x) = tTx+b

for t ∈ GF(2n), b ∈ GF(2), it is called an affine boolean function. The
set of all linear boolean functions on GF(2n) will be denoted Ln, and the
set of all affine boolean functions on GF(2n) will be denoted An.

Note that An contains exactly the linear boolean functions and their
complements. This definition tells us, among other things, that there are
exactly 2n linear boolean functions and 2n+1 affine boolean functions on
GF(2n). As any boolean function can be represented by a lookup table with
2n entries, defining the output for each possible input, there are a total of
22n

possible boolean functions on GF(2n).
At first glance it seems unreasonably restrictive to work with just boolean

functions, when our goal is to deal with permutations and other

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 5

GF(2n) 7→ GF(2m) mappings. However, any such function can be repre-
sented as a vector of m component functions:

F (x) = (f1, f2, ..., fm)

where each fi is a boolean function on GF(2n). Whenever possible, we will
attempt to cast properties of these general functions in terms of properties
of boolean functions. Thus it behooves us to become familiar with these
simpler functions before moving on to the general case.

It is useful to note here that linearity on GF(2n) is less work to prove
than in general, as scalar multiplication is a nonissue, since the only scalars
are 1 (identity, so linear functions stay linear) and 0 (makes any function 0,
which is as linear as it gets). Thus, to prove a function on GF(2n) linear,
we need only show the additivity property.

If we choose a boolean function at random (by generating a random
lookup table for an S-box, for instance), the odds of it being affine are
very small, and approach zero as n becomes large. Since almost all func-
tions are nonlinear, it is reasonable to wish to distinguish between nonlinear
functions in some way- to be able to say that one function is more nonlinear
than another. To do this we need to talk about distances.

Definition 4.2. Given f , g boolean functions on GF(2n), the distance be-
tween f and g is defined to be:

d(f, g) = #
{

x ∈ GF(2n) : f(x) 6= g(x)
}

where # denotes cardinality.

This is also called the hamming distance between boolean functions.
It is directly related to the hamming distance between vectors, as a boolean
function can be represented by a 2n-dimensional vector over GF(2), with
element x in the vector equal to the boolean function evaluated at x. This
distance is thus also the “taxicab” (or L1) metric.

Now that we have a distance, we can take a stab at measuring how non-
linear a boolean function is.

Definition 4.3. Given boolean function f and set G of boolean functions,
all on GF(2n), the distance between f and G is defined to be:

d(f,G) = min{d(f, g) : g ∈ G}.
Of particular interest for our purposes is d(f,An), the distance of a func-

tion f from the affine functions. We will tentatively define this as the non-

linearity of f . Note that the terms linear and affine are used in a less
than distinct way. This is the convention, however, so we will abide by it.
The word “nonaffinity” has a somewhat unpleasant sound in any event, so
perhaps it is for the best. In almost all cases it is the affine functions that
we will be concerned with.

6 PAUL CARR

5. Convolutions and the Walsh Transform

Now we will define and consider some tools that will be useful later.

Definition 5.1. The convolution f ∗ g, of functions f and g on GF(2n)
(not necessarily, but usually, boolean) is defined to be:

(f ∗ g)(a) =
∑

x∈GF(2n)

f(x)g(x + a).

Definition 5.2. Let f be a mapping from GF(2n) to {1,-1}. Then the
Walsh transform of f is an invertible mapping into the real-valued func-
tions. It is denoted as either w(f) or F̂(t), depending on context, and is
defined to be:

(w(f))(t) = F̂(t) =
∑

x∈GF(2n)

f(x)(−1)tTx, t ∈ GF(2n).

The inverse mapping (denoted w
−1(F̂)) is:

f(x) = 2−n
∑

t∈GF(2n)

F̂(t)(−1)tTx, x ∈ GF(2n).

Note that the Walsh transform acts on functions that are not boolean by
our definition. This is for clarity in notation in the following results, and we
will extend the Walsh transform to the boolean functions in a natural way
shortly.

Now we will state and prove two theorems involving convolutions and the
Walsh transform.

Theorem 5.3. (Convolution Theorem) For f , g functions from GF(2n) to

{1,−1}:

w(f ∗ g) = w(f)w(g).

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 7

Proof. Let F̂ = w(f), Ĝ = w(g), Ĥ = w(f + g). Then

Ĥ(t) =
∑

a∈GF(2n)

(f ∗ g)(a)(−1)tTa

=
∑

a∈GF(2n)

∑

x∈GF(2n)

f(x)g(x + a)

 (−1)tTa

=
∑

a∈GF(2n)

∑

x∈GF(2n)

f(x)g(x + a)(−1)tTa

(substitute y = x + a)

=
∑

y∈GF(2n)

∑

x∈GF(2n)

f(x)g(y)(−1)tT(x+y)

=
∑

y∈GF(2n)

∑

x∈GF(2n)

f(x)(−1)tTxg(y)(−1)tTy

=

∑

x∈GF(2n)

f(x)(−1)tTx

∑

y∈GF(2n)

g(y)(−1)tTy

= F̂(t)Ĝ(t).

�

That is, the Walsh transform of a convolution is the product of the Walsh
transforms of the convoluted functions. Now, one more general result about
Walsh transforms:

Theorem 5.4. (Parseval’s Theorem) For boolean function f on GF(2n),

and F̂ = w(f):

2n
∑

x∈GF(2n)

[f(x)]2 =
∑

t∈GF(2n)

[

F̂(t)
]2

.

Proof. Note first that

(f ∗ f)(a) = w
−1 ((w(f ∗ f))(a))

= 2−n
∑

t∈GF(2n)

((w(f ∗ f))(a)) (t)(−1)tTa.

8 PAUL CARR

Using this fact, we can achieve the desired result:

2n
∑

x∈GF(2n)

[f(x)]2

= 2n
∑

x∈GF(2n)

f(x)f(x)

= 2n(f ∗ f)(0)

= (2n)(2−n)
∑

t∈GF(2n)

(w(f ∗ f))(t)

=
∑

t∈GF(2n)

[F̂(t)]2 (by the Convolution Theorem).

�

Now we will extend the Walsh transform to apply to what we’re interested
in: boolean functions.

Definition 5.5. Let f be a boolean function on GF(2n). Then the Walsh
transform of f is defined to be:

(w(f))(t) = F̂(t) =
∑

x∈GF(2n)

(−1)f(x)(−1)tTx.

We can now use the Walsh transform to give another way to calculate
the nonlinearity of boolean functions. The following reasoning is taken from
[12].

Proposition 5.6. For all boolean functions f on GF(2n),

d(f,An) = 2n−1 − 1

2
max

t∈GF(2n)
|F̂(t)|.

Proof. Let F̂ be the Walsh transform of f . Then

F̂(t) =
∑

x∈GF(2n)

(−1)f(x)(−1)tTa

=
∑

x∈GF(2n)

(−1)f(x)+tTa

=
∑

x∈GF(2n)
f(x)=tTx

(1) +
∑

x∈GF(2n)
f(x)6=tTx

(−1)

= #{x ∈ GF(2n) : f(x) = tTa} − #{x ∈ GF(2n) : f(x) 6= tTa}
= (2n − d(f, tTa)) − (d(f, tTa))

= 2n − 2d(f, tTa).

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 9

By minor rearrangement, we get something useful:

(1) d(f, tTx) = 2n−1 − 1

2
F̂(t).

Now we have the distance of f from Ln. The other half of An contains the
complements of each function in Ln. For an affine function tTx + 1,

d(f, tTx + 1) = 2n − d(f, tTx).

So, through some more minor manipulation, we arrive at:

(2) d(f, tTx + 1) = 2n−1 +
1

2
F̂(t).

So, now we have a formula for the distance of f from every function in An.
By combining (1) and (2), we arrive at:

d(f,An) = min{min{d(f, tTx), d(f, tTx + 1)} : t ∈ GF(2n)}

= min{2n−1 − 1

2
|F̂(t)| : t ∈ GF(2n)}

= 2n−1 − 1

2
max{|F̂(t)| : t ∈ GF(2n)}.

So, the final result, after all that work, is what we want:

(3) d(f,An) = 2n−1 − 1

2
max

t∈GF(2n)
|F̂(t)|.

�

Finally, let us consider a particular set of boolean functions that we will
prove achieve maximum distance from An. Let the set Pn contain all boolean
functions on GF(2n) with the property that (f ∗ f)(a) = 0 for all nonzero
a. That is, f(x) and f(x + a) differ at exactly half of their inputs. Another
way to state this is:

∑

x∈GF(2n)

(−1)f(x)+f(x+a) = 0 ∀a ∈ GF(2n), a 6= 0.

Note that we are not making any claim of existence here: Pn may be empty,
and in fact it is empty for all odd n. Refer to Theorem 3.3B in [12] for an
explicit construction of some elements of Pn for all even n. Now for why
we’re interested in this set:

Theorem 5.7. For all f in Pn,

N (f) = 2n−1 − 2
n
2
−1.

Furthermore, this is the maximum possible nonlinearity for any boolean func-

tion on GF(2n).

10 PAUL CARR

Proof. By the Convolution Theorem:

w(f ∗ f) = [w(f)]2.

Let’s fiddle with the left side of this equation:

(w(f ∗ f))(t) =
∑

a∈GF(2n)

(f ∗ f)(a)(−1)tTa

= (f ∗ f)(0)(−1)tT0 +
∑

a∈GF(2n)
a6=0

0(−1)tTa

= (f ∗ f)(0)

=
∑

x∈GF(2n)

f(x)f(x)

=
∑

x∈GF(2n)

(±1)2

= 2n.

Thus [F̂(t)]2 = 2n for all t ∈ GF(2n).
This is a very high nonlinearity, close to the trivial upper bound of 2n−1,

but is it maximal? Suppose that boolean function f is not in Pn. Then by
Parseval’s Theorem:

∑

t∈GF(2n)

[F̂(t)]2 = 2n
∑

x∈GF(2n)

[f(x)]2 = 22n.

Since |F̂(t)| 6= 2
n
2 for at least one t ∈ GF(2n), there must exist a t with

|F̂(t)| > 2
n
2 . This implies that

d(f,An) < 2n−1 − 2
n
2
−1.

Thus f is “less” nonlinear than the elements of Pn.
�

What this means is that the set Pn, if nonempty, is the set of maxi-
mally nonlinear boolean functions on GF(2n), by our measure of nonlinear-
ity. These functions are called perfectly nonlinear and are the same as
the bent functions in combinatorics.

6. The Field Trace

Another tool that will be useful in manipulating functions on GF(2n) is
the field trace (or simply the trace, since it is the only trace we will be
dealing with).

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 11

Definition 6.1. The trace of x ∈ GF(2n), denoted Tr(x), is a mapping
from GF(2n) into itself, given by

Tr(x) =

n−1
∑

i=0

x2i

.

Now that we have it, we’d better figure out what we’re allowed to do with
it. We will begin by proving that it is not always zero.

Lemma 6.2. There exists an x in GF(2n) such that Tr(x) 6= 0.

Proof. The trace of x can be looked at as a polynomial of degree at most
2n−1. Thus there can be at most 2n−1 distinct x such that Tr(x) = 0. But
there are 2n elements in GF(2n). Thus there are at least 2n−1 elements x in
GF(2n) such that Tr(x) 6= 0.

�

So we at least know that the trace is not a completely uninteresting func-
tion. We will next demonstrate that it is linear.

Proposition 6.3. For all x, y ∈ GF(2n),

Tr(x + y) = Tr(x) + Tr(y).

Proof.

Tr(x + y) =
n−1
∑

i=0

(x + y)2
i

=
n−1
∑

i=0

(x2i

+ y2i

) (by the linearity of squaring in GF(2n))

=
n−1
∑

i=0

(x2i

) +
n−1
∑

i=0

(y2i

)

= Tr(x) + Tr(y).

�

Now, two multiplication-related properties:

Proposition 6.4. For all x ∈ GF(2n),

Tr(x2) = Tr(x).

12 PAUL CARR

Proof.

Tr(x2) =
n−1
∑

i=0

(x2)2
i

=
n−1
∑

i=0

x2i+1

=
n−2
∑

i=0

x2i+1

+ x2n

=
n−1
∑

i=1

x2i

+ x (since x2n

= x ∀x ∈ GF(2n))

=
n−1
∑

i=0

x2i

= Tr(x)

�

Lemma 6.5. For all x ∈ GF(2n),

(Tr(x))2 = Tr(x).

Proof.

(Tr(x))2 = (

n−1
∑

i=0

x2i

)2

=

n−1
∑

i=0

(x2i

)2

=

n−1
∑

i=0

x2i+1

= Tr(x) by the same logic as the previous proof.

�

That’s all pretty straightforward and not particularly surprising. How-
ever, it gets us the following, less obvious, result:

Proposition 6.6. For all x ∈ GF(2n), Tr(x) ∈ {0, 1}.
Proof. By Lemma 6.5, we know that

(Tr(x))2 = Tr(x) ∀x ∈ GF(2n)

=⇒ (Tr(x))2 + Tr(x) = 0

=⇒ Tr(x)(Tr(x) + 1) = 0

=⇒ Tr(x) = 0 or Tr(x) = 1.

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 13

�

Thus, the trace is a boolean function. Now we will consider what kinds of
boolean functions we can make using the trace. We will consider functions
of the form x 7→ Tr(ωx) for ω ∈ GF(2n).

Lemma 6.7. Tr(ωx) is a linear function of x.

Proof. We need only prove that Tr(ω(x1 + x2)) = Tr(ωx1) + Tr(ωx2):

Tr(ω(x1 + x2))

= Tr(ωx1 + ωx2)

= Tr(ωx1) + Tr(ωx2) (by Proposition 6.3).

�

Lemma 6.8.

Tr(ω1x) = Tr(ω2x) ∀x ∈ GF(2n) ⇐⇒ ω1 = ω2

Proof. It is clear that if ω1 = ω2, then Tr(ω1x) = Tr(ω2x)∀x ∈ GF(2n). We
thus need to prove the reverse implication. For each x in GF(2n),

Tr(ω1x) = Tr(ω2x) =⇒ Tr(ω1x) + Tr(ω2x) = 0 =⇒ Tr((ω1 + ω2)x) = 0.

If ω1 6= ω2, then x 7→ (ω1 + ω2)x is an invertible mapping from GF(2n) to
GF(2n). That is, it is a permutation. Thus:

Tr((ω1 + ω2)x) = 0 ∀x ∈ GF(2n)

=⇒ Tr(x) = 0 ∀x ∈ GF(2n)

But Lemma 6.2 states that there is at least one x such that Tr(x) 6= 0, so
this is a contradiction. Thus we can conclude that ω1 = ω2

�

Now we can combine Lemma 6.7 and Lemma 6.8 to arrive at the following
result, which is the main reason we’re interested in the trace function.

Theorem 6.9. The set of functions Tr(ωx), ω ∈ GF(2n), are exactly the

set of linear boolean functions on GF(2n).

Proof. This result follows directly from the observation that there are ex-
actly 2n possible linear boolean functions, 2n distinct values for ω, and
Lemmas 6.7 and 6.8

�

This means that we can represent any linear boolean function with a
trace function. In particular, for any function F that maps from GF(2n)
to GF(2m), each component boolean function of F , and more generally any
linear combination of component boolean functions of F , can be represented
by Tr(ωF) for some ω in GF(2m). This will be highly useful in proving the
nonlinearity of certain classes of functions.

14 PAUL CARR

7. Cryptanalysis

We don now the role of an attacker on a cipher, an eavesdropper on a
communication between two entities. Developing a theoretical attack on a
cipher is called cryptanalysis. Of course, in order to design a cipher, we
must first understand what must be defended against, and so the distinction
between cryptographer and cryptanalyst is often simply what hat a person
happens to be wearing at the time (hence the slang “White Hat” and “Black
Hat” to describe the good guys and the bad guys, respectively, in many areas
of computer security). Before proceeding with specific attacks we must first
define the knowledge we go into an attack on a cipher with, and also the
criteria for success in our attack.

There are various assumptions we might make about this situation. The
most minimal is that we know nothing- not the algorithm used, the block
size, the plaintext of any of the communication, nor the key. We see simply a
sequence of bits. However, we don’t want the security of a cipher to be based,
even in part, on the secrecy of the algorithm used, as this is much more
difficult to maintain than the secrecy of a particular key. Thus, it is generally
assumed that the algorithm is fully known to the attacker. We, as attacker,
are granted much more knowledge than this, however. We are given the
power to mount what is called a known plaintext attack. This means that
we know what some of the plaintext input to the keyed algorithm is. This
is not an unusual situation, as much computer-to-computer communication
involves header and formatting data (as in email messages) that does not
vary from message to message, and can be guessed at by the attacker. It
means the attacker has a set of (input, output) pairs to the keyed cipher. It
is hard to fully understand what information this grants in general, so this
knowledge is extended to a more general chosen plaintext attack where
it is assumed the attacker can choose inputs to the keyed algorithm and
receive the outputs. This is a less common scenario, but it is a superset of
the previous one. It gives us as the attacker all data except the key. Security
against known plaintext attacks is the strongest requirement for security of
a cipher.

Our success is easier to describe. We want the key. Equivalently, we
want all the round keys. One way to get this result that is unstoppable
and always successful is a brute-force search of the keyspace. That is, test
every possible value of the key until we find the one that, when we key the
algorithm with it, generates the same output as the keyed algorithm we are
attacking (which can be verified with a number of chosen plaintexts that
is linear with the length of the key). This attack is on the order of 2n,
where n is the number of bits in the key. It is this universal attack that
determines reasonable lower bounds for key lengths (currently around 128
bits). This is not a useful attack, but it is a useful baseline for attacks.
What we are looking for is an attack that takes less effort than this; for
instance, an attack that requires 2n−2 (input, output) pairs to calculate all

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 15

the round keys. Even if such an attack is not fast enough to recover the key
in a practical amount of time, it is still a theoretical weakness in the cipher.

The main goal in designing a cipher, then, is to make all known attacks
require more effort than a brute force keyspace search. We will now define
several mathematical characteristics the S-box function of a cipher must
possess in order for the cipher to have this property.

8. Linear Cryptanalysis

It has been noted that with the exception of the S-box function, the entire
encryption algorithm is linear. So if we can approximate the S-box with a
linear function, the algorithm is potentially compromised. So what does a
linear approximation look like? We want some sort of linear relationship
between the input bits and the output bits of the S-box that is true for
significantly more than half of all possible inputs. This means that if the
S-box is defined by a function S from GF(2n) to GF(2m), we want vectors
a ∈ GF(2n), b ∈ GF(2m), c ∈ GF(2), such that aTx = bTS(x) + c (mod 2)
for as large a number of input values as possible. Alternately, we can drop
the c, and look for either a maximal or minimal number of input values that
match the approximation. Another way to express this is to say that the
approximation aTx = bTS(x) (mod 2) holds with probability 1

2 + ε for some

ε ∈ [−1
2 , 1

2], and we’re looking for approximations with nonzero ε, the larger
in magnitude the better.

Recall that the S-box is only a portion of the round function, and in fact
only a portion of the nonlinear transform step. We need to first extend
S-box approximations into approximations for the full nonlinear function in
the round function. Typically the nonlinear function is applied by breaking
the input block into q blocks of equal length, inputting each into a single S-
box, and reassembling the outputs of the q S-boxes into a single large block
again. The S-boxes may all be the same, or they may not be. So let

F (x) = (S1(x1),S2(x2), ...,Sq(xq))

represent the round’s nonlinear function, with the Si set representing the q

S-box functions. Now, if we have a linear approximation for F of the form

aTx = bTF (x) (mod 2)

that holds with probability 1
2 + ε, we’d like to know how to relate this back

to approximations of individual S-boxes. Partition a and b into q pieces
corresponding to the xis, and rewrite our approximation as

(a1, a2, ..., aq)
T(x1, x2, ..., xq)

= (b1, b2, ..., bq)
T(S1(x1),S2(x2), ...,Sq(xq)) (mod2)

→ aT

1 x1 + aT

2 x2 + ... + aT

q xq

= bT

1 S1(x1) + bT

2 S2(x2) + ... + bT

q Sq(xq) (mod 2)

16 PAUL CARR

This is the sum of q single S-box linear approximations of the form

aT

i xi = bT

i Si(xi) (mod2),

each having a probability of (1
2 +εi). The connection between these probabil-

ities and the probability of the total approximation is given by the following
Lemma:

Lemma 8.1. (Piling-Up Lemma, see [11] for origin) Given q independent

approximations of the form Xi = Yi (mod2) with probability of occurrence
1
2 +εi, then the approximation X1 +X2 + ...+Xq = Y1 +Y2 + ...+Yq (mod 2)
holds with probability

1

2
+ 2q−1

q
∏

i=1

εi.

Proof. (by induction) For q = 2:

Pr(X1 + X2 = Y1 + Y2)

= Pr(X1 = Y1) Pr(X2 = Y2) + Pr(X1 6= Y1) Pr(X2 6= Y2)

=

(

1

2
+ ε1

)(

1

2
+ ε2

)

+

(

1

2
− ε1

)(

1

2
− ε2

)

=
1

2
+ 2ε1ε2 (mod 2)

Now, assume true for q:

Pr(X1 + X2 + ... + Xq+1 = Y1 + Y2 + ... + Yq+1)

= Pr(X1 + X2 + ... + Xq = Y1 + Y2 + ... + Yq) Pr(Xq+1 = Yq+1)

+ Pr(X1 + X2 + ... + Xr 6= Y1 + Y2 + ... + Yq) Pr(Xq+1 6= Yq+1)

=

(

1

2
+ 2q−1

q
∏

i=1

εi

)

(

1

2
+ εq+1

)

+

(

1

2
− 2q−1

q
∏

i=1

εi

)

(

1

2
− εq+1

)

=
1

2
+ 2q

q+1
∏

i=1

εi (mod 2).

�

Thus, assuming the inputs to each S-box are independent, which we’ll
wave our hands at in a minute, this lemma tells us that the probability of
the approximation for the nonlinear function is given by 1

2 + 2q−1
∏q

i=i εi.
An implication of this is that an approximation for the nonlinear function
will be better, in general, if the number of S-boxes involved is kept small-
that is, if many of the ai and bi vectors are equal to zero. In this case the
approximations aT

i xi = bT

i Si(xi) (mod 2) becomes 0 = 0 (mod 2), which

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 17

holds with probability 1, and thus doesn’t “weigh down” the probability for
the approximation of the nonlinear function.

But how does this get us closer to recovering the key? There are several
linear functions composed with the nonlinear function to make up the round
function, including a key addition, which is generally carried out as a simple
bitwise addition of the round key to the block of text being operated on.
So, either the input to the nonlinear function will be a linear combination
of the input to the round function and the round key, or the output of the
round function will be a linear combination of the output of the nonlinear
function and the round key. So, for example, a round function R(x, k) may
be written as:

(4) R(x, k) = L2(F (L1(x) + k))

where x is the input to the round, k is the round key for that round, L1 and
L2 are linear functions, and F is the nonlinear function made up by applying
the q S-box functions in parallel. Of course the linear approximations we’re
using, when applied to linear functions, hold true with probability 1, so the
approximation can be extended to become an approximation for the entire
round, involving the inputs to the round, x and k, and the output of the
round, y = R(x, k). With some rearranging of the sides of the equation, the
approximations will take the form dTk = aTx+bTy (mod 2), holding, again,
with some probability (1

2 +ε). The larger the magnitude of ε, the more useful
an approximation it is in recovering data about the bits of the round key
selected by d, essentially recovering one bit of information about the round
key. With more such approximations it is possible to recover more data. In
[11] it is shown that ε−2 (input, output) pairs are sufficient to be roughly
99% confident that the key information suggested by the approximation is
correct.

This, of course, is simply breaking one round- we must break many (usu-
ally in the low double-digits range). This means worrying about intermedi-
ate values for the block of input. What we are after are linear trails.

Definition 8.2. An r-round linear trail consists of r approximations of
the form dT

i ki = aT

i x + bT

i y (mod 2), with the requirement that the bi

selection vector on the output of one approximation equal the ai+i selection
vector on the input of the next approximation.

By adding these r approximations mod 2 all of the intermediate terms
cancel, and we are left with a single large approximation involving only
inputs to the first round, outputs of the rth round, and the round keys. If
we assume the round keys are statistically independent of one another (which
in practice is almost true- that being the goal of the key schedule- and thus
makes for at least a very good approximation), then they make the inputs
to each round and each S-box independent as well. Thus we can apply the
Piling-up Lemma to this final approximation to determine its probability,
in terms, ultimately, of the probabilities of each S-box approximation.

18 PAUL CARR

This, then, is linear cryptanalysis: find a sufficient number of linear
trails to recover most of the key, then generate enough (plaintext, cipher-
text) pairs to determine those key bits with a reasonable degree of certainty.
Finally, use a small amount of brute-force key searching to recover the final
few bits that the approximations didn’t yield. Result: full key recovery, and
the breaking of the cipher, assuming of course that all this work was in fact
less work than doing a full keyspace search to begin with.

So, what does the preceding tell us about making a cipher resistant to
this attack? We want the ε associated with any linear trail to be small
enough that ε−2 is larger than the total number of possible keys, so that
generating a sufficient number of (plaintext, ciphertext) pairs takes longer
than a brute-force search of the keyspace. There are two ways to do this.
One is to choose the linear functions involved in the round function to make
sure that as many S-boxes are involved with any trail as possible. This
would make it difficult for an attacker to find a trail through only a few
S-boxes, which would be more likely to have a large ε. We are focusing on
the S-box design, however, so we’ll pass over that. The other defense is to
choose S-box functions so that the ε associated with each possible linear
approximation of the S-box is bounded by as small a value as possible. This
forces the ε for any linear trail to be bounded in a related way, through the
Piling-up Lemma.

Let’s build some formalism to deal with this goal of a tiny ε. The following
definitions and results are largely from [13].

Definition 8.3. For boolean function f : GF(2n) → GF(2) the nonlinear-

ity of f is:

N (f) = min
a∈GF(2n)
c∈GF(2)

#{x ∈ GF(2n) : f(x) = aTx + c}

where # represents cardinality.

This should look familiar: it is d(f,An), the Hamming distance of f

from the affine functions, our previous definition of nonlinearity for boolean
functions. Now we will extend this from boolean functions to the general
case.

Definition 8.4. For function F : GF(2n) → GF(2m) the nonlinearity of
F is:

N (F) = min
b∈GF(2m)

b6=0

N (bTF)

= min
a∈GF(2n), b∈GF(2m)

c∈GF(2), b6=0

#{x ∈ GF(2n) : bTF (x) = aTx + c}

where # represents cardinality.

Another way to state this is to say that the nonlinearity of a function

F (x) = (f1(x), f2(x), ..., fm(x))

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 19

is the minimum of the nonlinearities of all linear combinations of its com-
ponent functions. From Theorem 5.7, we can take the nonlinearity of the
perfectly nonlinear boolean functions, 2n−1 − 2

n
2
−1, as an upper bound on

N (F) in general.

Proposition 8.5.

N (F) = min
a∈GF(2n), b∈GF(2m)
c∈GF(2), a6=0 or b6=0

#{x ∈ GF(2n) : bTf(x) = aTx + c}

Proof. If b = 0, then

min
a∈GF(2n),b∈GF(2m)
c∈GF(2),a6=0 or b6=0

#{x ∈ GF(2n) : bTf(x) = aTx + c}

= min
a∈GF(2n),c∈GF(2)

a6=0

#{x ∈ GF(2n) : 0 = aTx + c}

=
1

2
2n = 2n−1 ≥ N (F).

Thus the inclusion of these extra elements in the set will not change the
set’s minimum.

�

Using this slight generalization, we can say something about how N (f)
behaves under the taking of inverses:

Theorem 8.6. Let F : GF(2n) → GF(2n) be a permutation. Then

N (F−1) = N (F).

Proof.

N(F−1)

= min
a,b∈GF(2n), c∈GF(2)

a6=0 or b6=0

#{y ∈ GF(2n) : bTF−1(y) = aTy + c}

= min
a,b∈GF(2n), c∈GF(2)

a6=0 or b6=0

#{x ∈ GF(2n) : bTx = aTF (x) + c}

= N (F)

�

Using these results, we can say that for any linear approximation of F ,

|ε| ≤ 2n −N (F)

2n
− 1

2
=

1

2
− 2−nN (F).

By extension, in choosing an S-box function S, we want something with as
large a value for N (S) as possible. As the lowest upper bound we have so

far is 2n−1 − 2
n
2
−1, we will try to find functions whose nonlinearity is close

to that.

20 PAUL CARR

So, given all this, we can formally state one of the goals in designing
secure S-boxes:

Goal A. A suitable S-box function S: GF(2n) → GF(2m) should have the
property that N (S) is maximal or near-maximal. Specifically, N (S) should

be close to the upper bound 2n−1 − 2
n
2
−1.

9. Differential Cryptanalysis

In general, any time we can find a way to recognize patterns in the non-
linear S-box, and propagate information about those patterns out of the
algorithm, we have a potential vulnerability in the cipher. One such pat-
tern is how differences in input to the S-box function relate to differences
in its output. The natural way to represent “difference” is, again, hamming
distance. In 1990 Eli Biham and Adi Shamir proposed (in [1], and in 1993
refined in [2]) using the statistical relationship between these differences to
recover round keys in the DES cipher.

We will begin by considering a single S-box function

S(x) : GF(2n) → GF(2m).

Given two inputs to S, x1 and x2, and their related outputs y1 = S(x1) and
y2 = S(x2), we can calculate

x′ = x1 + x2

y′ = y1 + y2.

The relevant question then, is: for a given input difference x′, are all output
differences y′ possible, or equally likely? The answer is no, and in the case
of the vast majority of possible S-box functions, not even close. We can
generate a table relating input and output differences in the following way:

Fix x′. ∀x ∈ GF(2n) :

Find y′ = S(x + x′) + S(x)

Increment table position (x′, y′)

Repeat for all x′.

In the end we will have a table, called a pairs xor distribution table,
with 2n rows, corresponding to the input differences, and 2m columns, cor-
responding to the output differences. All entries in the table will be even,
since

(5) S(x + x′) + S(x) = S((x + x′) + x′) + S(x + x′).

Also, the entries in each row (a fixed x′) sum to 2n. Many entries will be
zero, meaning that for a given input difference, certain output differences
never occur. If table entry (x′, y′) = q 6= 0, we say that input difference x′

suggests output difference y′ with probability q
2n . If table entry (x′, y′) = 0,

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 21

we say that input difference x′ does not suggest output difference y ′. On
the row corresponding to an input difference x′ = 0, the output difference
y′ = 0 will have value 2n, and all other output differences will have a value
of 0, since identical inputs to the S-box must lead to identical outputs.

Recall that the nonlinear substitution function F in the round function
of a cipher is typically made up of several S-boxes operating on pieces of the
input in parallel. The probability of an input difference to F suggesting a
particular output difference is simply the product of the probabilities that
each S-box’s input difference suggests its output difference.

So now we have a way of relating input differences to output differences
in the only nonlinear component of the cipher. We will now extend it to a
full round. Recall the round function R given in (4), and consider round
inputs x1, x2 ∈ GF(2n), with x′ = x1 +x2, and round outputs y1 = R(x1, k)
and y2 = R(x2, k), with y′ = y1 + y2. Then

L1(x1) + L1(x2) = L1(x1 + x2) = L1(x
′).

When the key is added to both intermediate values, it is cancelled out when
adding them together mod 2, so the difference is invariant under key addi-
tion. Thus, by knowing the difference in round inputs, we can determine
the difference in S-box inputs, regardless of key. Now,

F (L1(x1) + k) + F (L1(x2) + k)

=L−1
2 (L2(F (L1(x1) + k) + F (L1(x2) + k)))

=L−1
2 (L2(F (L1(x1) + k)) + L2(F (L1(x2) + k)))

=L−1
2 (y1 + y2)

=L−1
2 (y′).

Thus we can also determine the difference in nonlinear function outputs
given the difference in round outputs. What all this means is that we can
extend our description of F to a description of the full round function, with
no further reduction in probabilities.

We now need to leverage these mechanics to recover the round key. So,
for a given (x′, y′) round input/output difference pair, we can determine an
(x′

F , y′F) nonlinear function difference pair. Let’s go to work:
For a keyed round function Rk, round input x, and input difference x′,

calculate:

y = Rk(x)

y′ = Rk(x) + Rk(x + x′)

x′
F = L1(x

′)

y′F = L−1
2 (y′).

Now, find the set XF = {xF : F (xF)+F (xF +x′
F) = y′F}. This is the set of

all the possible inputs to the function F that satisfy the constraint that the
input difference and output difference agree with x′

F and y′F determined by

22 PAUL CARR

our choice of x and x′. The cardinality of XF will be the number at position
(x′, y′) on the pairs xor distribution table of F . Each of these possible values
for xF suggests a possible value for the round key in the following way: since,
for the actual value of xF , xF = k + L1(x),

(6) k = xF + L1(x).

So we have |XF | possible values for k. Now we repeat the process by varying
our choice of x, or x′, or both, as desired. The actual round key will be the
one suggested by all trials. Other suggested key values will be distributed
in a generally random fashion, though for a given x′, the actual key value
k and k + L1(x

′) will both be suggested. Thus multiple choices of x′ are
required to uniquely identify the round key.

So, we can break one round without too much difficulty, and also without
invoking the probabilities associated with each (x′, y′) pair. Now we must
extend this attack to an arbitrary number of rounds in order to break a full
cipher. We do this by means of differential characteristics.

Definition 9.1. An r-round differential characteristic is a set of r

differences

{x′(1), x′(2), ..., x′(r)}
such that for i = 1, 2, ..., (r − 1), the difference x′(i) suggests the difference
x′(i + 1) in round r with nonzero probability.

What we have, then, is the equivalent of a linear trail in linear cryptanal-
ysis. Given a pair of cipher inputs x1 and x2 such that x1 + x2 = x′(1), a
differential characteristic is a possible set of differences that the intermediate
values generated by x1 and x2 will have, so R(x1) + R(x2) may equal x′(2),
and so on through the cipher, until the final output difference at the end of
r rounds may be x′(r). That is a lot of “may”s. Assuming that the round
keys are uniformly random (which, again, is close to, but not exactly, true),
the probability of a characteristic holding true for a given x1, (x1 + x′(1))
input pair is the product of the probabilities of it holding true at each round.
That is, if pi is the probability that x′(i) suggests x′(i + 1) in round i, then
the probability of a characteristic holding for a given input pair is:

r−1
∏

i=1

pi.

Now, we have determined that, to recover a round key, we need a set of
pairs of inputs to that round, a set of input differences, and a set of output
differences. If we have an input pair for which a characteristic holds, then
we have all the input differences and output differences for each round. We
also have the input value to the first round. Thus, if the set is large enough,
we can recover the first round’s key. Using that key, we can determine the
input to the second round, and recover its key in the same way, and so forth
through the cipher.

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 23

However, how do we know if a characteristic holds? Once we have con-
structed an r-round characteristic which holds with probability p, we can
generate a large set of input pairs with the correct difference, and encrypt
all of them. For each pair of outputs, we can check their difference against
the final difference in the characteristic. If they differ, then that input pair
is not a “right pair” for that characteristic, and can be discarded. Almost
all pairs will fall into this category. Of the remaining pairs, all have the
correct initial difference value x′ and final difference value y′. We cannot
know, however, if all intermediate difference values are correct. Thus when
we try to recover the key from the first round, there will not necessarily be a
key value that is suggested by all the difference pairs. However, the “wrong
pairs” will suggest key values that are reasonably randomly distributed, just
as the wrong key values suggested by the “right pairs” are. Thus the correct
round key is likely to be the value suggested most often by all the remaining
pairs.

So, given enough input pairs and corresponding output pairs, we can
recover the round keys. But how much is enough? And, more importantly,
is it more or less than would be required by a brute force search of the
keyspace? The number of “right pairs” needed will be some constant value
determined primarily by the input size, as well as by the probability that
any involved 1-round characteristic will hold. The number of “right pairs”
found out of a set of input pairs will be determined by the probability of the
r-round characteristic. Thus the dominating factor in determining whether
or not differential cryptanalysis can be successful against a cipher is the
maximum probability of any differential characteristic in that cipher. Two
factors determine this maximum. One is the minimum number of S-boxes
active in any characteristic. An S-box is active if the input to it is different
for the two inputs to the round. If both inputs to the round only differ in
the second half of their bits after being fed through the linear function L1,
then the S-boxes acting on the first half of their bits are seeing an input
difference of 0, which will lead to an output difference of 0, with probability
1. Thus when choosing a characteristic it is beneficial to pick differences that
only affect a limited number of bits (the downside being that an inactive
S-box can reveal nothing about the key bits associated with it). Thus it is
the job of the linear functions L1 and L2 to diffuse differences and force as
many S-boxes to be active as possible, thus reducing the probability of any
characteristic. The second determining factor is the maximum probability
of any input difference to an S-box leading to any output difference.

It is this second requirement that we will concern ourselves with, as it is
the one the choice of S-box has control over. We will formalize the require-
ment in the following way:

Definition 9.2. A function F : GF(2n) → GF(2m) is called differentially

δ-uniform if, for all α ∈ GF(2n), β ∈ GF(2m), α 6= 0,

#{x ∈ GF(2n) : F (x + α) + F (x) = β} ≤ δ

24 PAUL CARR

where # represents cardinality.

This means that no entry in the pairs xor distribution table can be larger
than δ. If a cipher is differentially δ-uniform, and in any characteristic
at least s S-boxes must be active, then the maximum probability for any
characteristic must be less than or equal to

(

δ
2n

)s
. The number of plaintext

pairs needed to be encrypted to launch a differential attack will be c(2n

δ)s

for some constant c. We can now use this definition to define our second
goal.

Goal B. A suitable S-box function S: GF(2n) → GF(2m) should be differ-
entially δ-uniform for as small a δ as possible.

10. Power Polynomials

Now that we have a pair of goals in mind, we can begin looking for po-
tential S-box functions. While the squaring function x 7→ x2 on GF(2n) is
linear, it was noted (see, for instance, [16]) that certain other power func-
tions, such as x 7→ x3, appeared to be highly suitable candidates for S-box
functions. Through the course of further study (see [13], [14], [15]), various

properties of functions of the form x 7→ x2k+1, on GF(2n), when a permuta-
tion, were proven. These properties make functions of this form satisfy our
two goals to a near-maximal extent. We will now run through the proof of
this, the main structure of which is taken from [14].

Proposition 10.1. Let F (x) = x2k+1 be a power polynomial acting on

elements of GF(2n) and let s = gcd(k, n). Then F is differentially 2s-

uniform.

Proof. We aim to show that

max
α,β∈GF(2n)

α6=0

{x : F (x + α) + F (x) = β} ≤ 2s.

So, let α, β ∈ GF(2n), α 6= 0 be arbitrary. The equation

(x + α)2
k+1 + x2k+1 = β

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 25

has either zero or at least two solutions, since solutions come in pairs
(x, x + α). Let x1, x2 be two distinct solutions. Thus:

(x1 + α)2
k+1 + x2k+1

1 + (x2 + α)2
k+1 + x2k+1

2 = β + β

=⇒ (x1 + α)(x2k

1 + α2k

) + x2k+1
1 + (x2 + α)(x2k

2 + α2k

) + x2k+1
2 = 0

=⇒ αx2k

1 + x1α
2k

+ αx2k

2 + x2α
2k

= 0

=⇒ α(x1 + x2)
2k

+ α2k

(x1 + x2) = 0

=⇒ (x1 + x2)
2k−1 + α2k−1 = 0 (since α(x1 + x2) 6= 0)

=⇒ (x1 + x2)
2k−1 = α2k−1.

This means that (x1 + x2) = αγ, where γ2k−1 = 1. We must determine
how many possible values there are for γ. Since GF(2n)\{0} forms a group
under multiplication of order 2n−1, the multiplicative order of γ must divide

2n − 1. In order for γ2k−1 = 1 to hold, the order of γ must divide 2k − 1.
Thus the order of γ must divide gcd(2n − 1, 2k − 1) = 2gcd(n,k) − 1 = 2s − 1
(by Knuth’s GCD lemma- see, for instance, [8]). The set of all such γ, with
0 added, forms a subfield of GF(2n) of order 2s. Thus there are 2s − 1
possible nonzero values for γ (γ = 0 corresponding to x1 = x2, which we
are discounting). Thus given one solution, there are exactly 2s − 1 other
solutions, for a total of 2s. Thus F is differentially 2s-uniform.

�

Proposition 10.2. Let F (x) = x2k+1 be a power polynomial acting on

elements of GF(2n) and let s = gcd(k, n). If F is a permutation, then

N (F) = 2n−1 − 2
n+s

2
−1.

Proof. By Theorem 6.9, any nontrivial linear combination of the component
boolean functions of F can be represented by

fω(x) = Tr(ωF (x))

for some ω ∈ GF(2n), ω 6= 0. Denote by F̂ω(t) the Walsh transform of fω(x).
Since, by (3),

N (F) = 2n−1 − 1

2

 max
ω,t∈GF(2n)

ω 6=0

|F̂ω(t)|

it will suffice to prove that

max
ω,t∈GF(2n)

ω 6=0

(

(F̂ω(t))2
)

= 2n+s.

Let ω ∈ GF(2n), ω 6= 0 be arbitrary. Before we begin manipulating (F̂ω(t))2,
we must develop a tool to assist us.

26 PAUL CARR

Let y ∈ GF(2n), y 6= 0 be arbitrary, and denote by Ey the range of the
mapping

(7) x → F (x + y) + F (x) + F (y) = x2k

y + y2k

x.

Note that this mapping is linear on x. As in Proposition 10.1, the dimension
of the kernel of this mapping is s, so the dimension of Ey is n − s.

Now, consider Tr(ωβ) as a linear function of β ∈ Ey. One of two things
must be true, given this linearity: either:

(8)
∑

β∈Ey

(−1)Tr(ωβ) = 0

or:

(9) Tr(ωβ) = 0 ∀β ∈ Ey

depending on whether Tr(ωβ) is the zero function or not. Let Y be the linear
subspace of GF(2n) containing all y such that Tr(ωβ) is the zero function.
By manipulating Tr(ωβ) further, we see that

Tr(ωβ)

= Tr(ω(F (x + y) + F (x) + F (y)))

= Tr(ωF (x + y)) + Tr(ωF (x)) + Tr(ωF (y))

= fω(x + y) + fω(x) + fω(y).

So for all y in Y ,

fω(x + y) = fω(x) + fω(y) ∀x ∈ GF(2n).

Thus fω is linear on Y . But what is the cardinality of Y ?

∀y ∈ Y, 0 = Tr(ωβ)

= Tr(ω(x2k

y + y2k

x))

= Tr(ωx2k

y) + Tr(ωy2k

x).

Thus

(10) Tr(ωx2k

y) = Tr(ωy2k

x) ∀y ∈ Y

However, by Proposition 6.4, we know that

(11) Tr(ωy2k

x) = Tr((ωy2k

x)2
k

) = Tr(ω2k

y22k

x2k

).

Combining (10) and (11), we get:

Tr(ωyx2k

) = Tr(ω2k

y22k

x2k

) ∀x ∈ GF(2n).

Thus, by Lemma 6.8,

ωy = ω2k

y22k

=⇒ 1 = ω2k−1y22k−1

=⇒ 1 = (ωF (y))2
k−1.

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 27

By the same logic as Proposition 10.1, there are 2s possible values for ωF (y).
Since F is a permutation, there are thus 2s possible values for y. One is
zero, so we end up with 2s − 1 elements in Y .

Now we have the tools needed to manipulate (F̂ω(t))2:

(F̂ω(t))2 =

∑

x∈GF(2n)

(−1)fω(x)+xTt

∑

y∈GF(2n)

(−1)fω(y)+yTt

=
∑

x∈GF(2n)

(−1)fω(x)+xTt

∑

y∈GF(2n)

(−1)fω(x+y)+(x+y)Tt

=
∑

y∈GF(2n)

(−1)yTt
∑

x∈GF(2n)

(−1)fω(x+y)+fω(x)

= 1
∑

x∈GF(2n)

(1) +
∑

y∈GF(2n)
y 6=0

(−1)yTt
∑

x∈GF(2n)

(−1)fω(x+y)+fω(x)

= 2n +
∑

y∈GF(2n)
y 6=0

(−1)yTt
∑

x∈GF(2n)

(−1)Tr(ωβ)+fω(y)

= 2n +
∑

y∈Y
y 6=0

(−1)yTt+fω(y)
∑

x∈GF(2n)

(−1)Tr(ωβ)

+
∑

y/∈Y
y 6=0

(−1)yTt+fω(y)
∑

x∈GF(2n)

(−1)Tr(ωβ)

= 2n +
∑

y∈Y
y 6=0

(−1)yTt+fω(y)
∑

x∈GF(2n)

(1)

+
∑

y/∈Y
y 6=0

(−1)yTt+fω(y)(0)

= 2n + 2n
∑

y∈Y
y 6=0

(−1)yTt+fω(y).

Since fω is linear on Y , there exists a t in GF(2n) such that yTt = fω(y).
Thus

max
t∈GF(2n)

(F̂ω(t))2 = 2n + 2n
∑

y∈Y
y 6=0

(−1)0 = 2n + 2n(2s − 1) = 2n+s.

28 PAUL CARR

Therefore:

max
t∈GF(2n)

(

F̂ω(t)
)

= 2
n+s

2

Which gives us what we want, specifically:

N (F) = 2n−1 − 2
n+s

2
−1.

�

So, on GF(2n), F (x) = x2k+1, when it is a permutation, is a very solid
choice for an S-box function, being near-optimal in both nonlinearity and
differential uniformity. In fact, the cipher C ∗ is built on exactly these func-
tions. Also, given Theorem 8.6, the inverses of these functions are equally
suitable, while having several added benefits that are outside the scope of
this paper.

11. The Inversion Function

In the process of investigating power polynomials and their inverses, an-
other function was found with the desired properties: the inversion func-

tion. Specifically:

(12) F (x) =

{

x−1 x 6= 0

0 x = 0

By plugging the undefined hole in the inversion function, we get a permu-
tation on GF(2n). Note that in the field GF(2n), x−1 = x2n−2 for nonzero
x, so this is still more or less a power polynomial. Now to demonstrate the
suitability of this function. The main structure of the following proofs again
comes from [14].

Proposition 11.1. Let F (x) be the inversion function as defined in (12).
Then F is differentially 4-uniform.

Proof. As in 10.1, we are interested in the maximum number of solutions to
the equation

(13) F (x + α) + F (x) = β.

For arbitrary α and β in GF(2n), α 6= 0. If x = 0 or x = α is a solution to
(13), then both are solutions, and β = α−1. In that case, (13) is equivalent
to

(x + α)−1 + x−1 + α−1 = 0

=⇒ (x)(x + α)(α)((x + α)−1 + x−1 + α−1) = 0

=⇒ (x)(α) + (x + α)(α) + (x)(x + α) = 0

=⇒ x2 + αx + α2 = 0.

By squaring this and applying the substitution x2 = α2 + αx we arrive at

(14) x(x3 + α3) = 0.

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 29

If gcd(3, 2n−1) = 1, then there are no additional solutions to (13). However,
if 3 divides 2n − 1, then (14) can be factored further, into

(15) x(x + α)(x + α1+ 1

3
(2n−1))(x + α1+ 2

3
(2n−1)).

for a total of four solutions to (13).
Now, if x = 0 and x = α are not solutions to (13), then it is equivalent to

(16) βx2 + αβx + α = 0

which has at most two solutions in GF(2n). Since there are at most four
solutions in any circumstance, F is differentially 4-uniform.

�

Proposition 11.2. Let F (x) be the inversion function as defined in (12).
Then

N (F) ≥ 2n−1 − 2
n
2 .

Proof. As in 10.2, it will suffice to show that

max
ω,t∈GF(2n)

ω 6=0

|F̂ω(t)| ≤ 2
n
2
+1.

Consider the substitution α = tx, c = ωt, and note that, since we’re inter-
ested in the max over all t, we can replace tTx with Tr(tx). The Walsh
transform then becomes:

max
ω,t∈GF(2n)

ω 6=0

∣

∣

∣F̂ω(t)
∣

∣

∣ = max
ω,t∈GF(2n)

ω 6=0

∣

∣

∣

∣

∣

∣

∑

x∈GF(2n)

(−1)fω(x)+xTt

∣

∣

∣

∣

∣

∣

= max
ω,t∈GF(2n)

ω 6=0

∣

∣

∣

∣

∣

∣

∑

x∈GF(2n)

(−1)Tr(ωx−1)+Tr(tx)

∣

∣

∣

∣

∣

∣

= max
ω,t∈GF(2n)

ω 6=0

∣

∣

∣

∣

∣

∣

∑

α∈GF(2n)

(−1)Tr(ωtα−1)+Tr(α)

∣

∣

∣

∣

∣

∣

= max
c∈GF(2n)

c6=0

∣

∣

∣

∣

∣

∣

∑

α∈GF(2n)

(−1)Tr(cα−1)+Tr(α)

∣

∣

∣

∣

∣

∣

= max
c∈GF(2n)

c6=0

∣

∣

∣

∣

∣

∣

∑

α∈GF(2n)

(−1)Tr(cα−1+α)

∣

∣

∣

∣

∣

∣

.

The Walsh transform in this form is seen to be a Kloosterman sum. See [4]
for a treatment of these. It is proven there that a reasonably tight upper
bound for the absolute value of such a sum is 2

√
2n. Thus

max
ω,t∈GF(2n)

ω 6=0

|F̂ω(t)| ≤ 2
n
2
+1

30 PAUL CARR

which is exactly what we want.
�

So, the inversion function (12) is another eminently suitable function to
use as an S-box function. It is slightly less nonlinear than the power poly-
nomials discussed in section 10, but it is not restricted to finite fields of odd
dimension, as the power polynomials are (in order to be a permutation).
This is convenient to the designer of a cipher in that it is natural to de-
fine block sizes as a certain number of bytes (1 byte = 8 bits). The cipher
Rijndael, which we will discuss momentarily, uses the inversion function.

12. Rijndael

When it was first decided, in the early 1970s, that there should be a “stan-
dard” cipher for the US government (and thus a de facto industry standard,
since the government is in general a very large purchaser of cryptographic
products), there was very little public research going on in cryptography.
The National Security Agency (NSA) did not want to produce a cipher for
public use, as they feared that this would expose too much of their inter-
nal methodology to external scrutiny. Thus the call went out for candidate
submissions. IBM was one of the few places where significant work was
being done in this area, and they developed an algorithm based on a pre-
viously existing cipher called Lucifer, and submitted it for consideration.
Upon selection by the National Bureau of Standards (now called the Na-
tional Institute of Standards and Technology, or NIST), it was dubbed the
Data Encryption Standard, or DES. Some tweaks made to the S-boxes of
DES at the last minute, allegedly at the behest of the NSA, led to over a
decade of paranoia on the part of the newly developing public cryptography
field, which invested a great deal of effort in hunting for trapdoors in the
algorithm that might reveal key bits to those who knew where to look for
them. As it turned out, the tweaks had actually made DES very resistant
to differential cryptanalysis, which didn’t come along publicly until 1990.
This cemented the mystique, still in force today, of the NSA as being 10 to
15 years ahead of the public sector in cryptanalysis.

By the early 1990s DES was demonstrated to be slightly vulnerable to
both differential and linear cryptanalysis. More importantly than that, how-
ever, was its key length, which could be set to either 40 or 56 bits, neither
of which was, by then, long enough. In 1993 a machine was proposed that
would cost one million dollars and be able to perform a full brute force
keyspace search in 7 hours. With the advance of technology it only became
easier and cheaper with time. Various attempts to extend the key length
were not satisfactory. DES was no longer sufficient. So in 1997 the call once
again went out for candidates for a new standard, to be called the Advanced
Encryption Standard, or AES. NIST released a set of design requirements,
and in return received fifteen different potentially solid designs, which was

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 31

pared down to five for final consideration. These were MARS, RC6, Rijn-
dael, Serpent, and Twofish (clearly naming conventions vary pretty wildly
from organization to organization). All of these final five met the design cri-
teria and had no vulnerabilities that could be found over a four year period
of intense scrutiny. Near the end of 2000, NIST announced that Rijndael [6]
was to be the Advanced Encryption Standard.

So, what is Rijndael, and why did it win? And for that matter, how do you
pronounce it? It is an amalgam of the names of its creators, Joan Daemen
and Vincent Rijmen. They say they don’t care how one pronounces it, as
long as it’s not “Region Deal”. “Rhine Dahl” is suggested. To people that
complain about the tongue-twisting, Rijmen replies on his homepage that
they are debating the alternate names “Herfstvrucht”, “Angstschreeuw”,
“Koeieuier”, and “Bob”.

All of that aside, Rijndael is a modification of a cipher that Daemen had
developed previously with Lars Knudsen called Square [5]. It was developed
with heavy reference to the results that have already been discussed in this
paper, particularly the papers of Nyberg [13, 14, 15]. Rijndael can be run in
several modes, with varying key and block lengths, with a particular number
of rounds defined for each. The form a single round takes is

(17) y = L2(L1(F (x))) + k.

L1 and L2 are linear functions that apply diffusion to the input through a
method called the wide-trail strategy which is beyond the scope of this
paper. F is the nonlinear function made up of several identical S-boxes
acting on byte-sized inputs, in other words on GF(28). k is the round key.
The final round omits the L2 function. This is a slight variation on the
generic round function we have considered up to now, but all of our previous
results still apply.

The S-box function S is what we are most interested in, of course. De-
pending on the block size, it may be applied in parallel to in the vicinity
of two dozen pieces of the intermediate value. The specific criteria for the
S-box as given in [6] are as follows:

(1) Invertibility;
(2) Minimization of the largest non-trivial correlation between linear

combinations of input bits and linear combination of output bits;
(3) Minimization of the largest non-trivial value in the xor table;
(4) Complexity of its algebraic expression in GF(28);
(5) Simplicity of description.

The first criteria requires S to be a permutation, as anything else would
not be decryptable. The second and third are other ways of stating our
Goals A and B. The fourth is a requirement we have not discussed per-
taining to a class of attacks that attempt to create a simple algebraic de-
scription of the entire cipher. The fifth is what sets Rijndael apart from the
other AES finalists. A clean and simple design means less room for hidden
interactions or, worst case, hidden trapdoors.

32 PAUL CARR

So what is S? It is the inversion function (12) discussed in Section 11,
applied to GF(28), with multiplication done under the modulus
x8+x4+x3+x+1, composed with an invertible affine mapping p(x) 7→ q(x)
given by:

q(x) = (x7 + x6 + x2 + x) + p(x)(x7 + x6 + x5 + x4 + 1) (modx8 + 1).

Note that the modulus of the affine mapping is not irreducible. The affine
function is chosen to force S as a whole to have a complicated algebraic
expression, even though its two component functions are simply described.
Also note that this composition does not affect the nonlinearity or the dif-
ferential uniformity of S.

Proposition 11.1 states that this function will be differentially 4-uniform,
and Proposition 11.2 states that the nonlinearity of S will be greater than
or equal to 27 − 24 = 112, very close to the upper bound of 27 − 23 = 120
proven in Theorem 5.7. These values, combined with the diffusion properties
of the linear components of the round, and the number of rounds, makes
Rijndael secure against linear and differential cryptanalysis. Neither of these
attacks can be leveraged against Rijndael in any way that requires fewer
(plaintext, ciphertext) pairs than a full keyspace search. In fact it’s not even
close. The keyspace itself is large enough to make such a brute-force attack
infeasible in any reasonable time frame. A 128 bit key means that, even if
we could test one trillion keys per second, it would still take roughly 1019

years to be guaranteed key recovery (the age of the universe is frequently
estimated to be not much over 1010 years). Each additional bit doubles
the required time, and the largest key Rijndael supports is 256 bits (well
over 1057 years required). There have been a number of reduced round
attacks proposed on Rijndael since its designation as AES, but none have
come close to being feasible against the full cipher in any mode. There is of
course new work being done in this area constantly, and a class of attacks
called quadratic cryptanalysis, or alternately the XSL attack, may be
applicable at some point in the future. This sort of research is a danger for
all ciphers, of course. SHA-1, the dominant hashing algorithm in general
use, was broken in February of 2005. There’s a looming threat against
RSA and several of the discrete-logarithm-based public key ciphers in the
form of Shor’s Algorithm, a method of factoring large composite numbers
and finding discrete logs in polynomial time, using (currently) unavailable
quantum computers. In other words, nothing is certain, but under the
current state of the art, Rijndael is about as secure as it gets.

13. Conclusion

Cryptography is necessary to the functioning of modern society, yet the
design of symmetric-key ciphers is with some justification considered a Black
Art. Certainly the “blackest” part of such design is the construction of
the nonlinear S-box function. Up until very recently, these functions were

CRYPTOGRAPHY: MATH TRUMPS BLACK MAGIC 33

designed primarily as random lookup tables with some constraints. With the
techniques and rigor advanced by the series of papers by, particularly, Meier
and Staffelbach [12], Pieprzyk [16], and Nyberg [13, 14, 15], a new method
of designing S-boxes has been advanced, and demonstrated to be effective.
The fact that a cipher designed in this way was chosen to be AES out of a
field of very qualified candidates indicates that the methods described here
will see much more widespread use in the future. Mathematics trumps black
magic.

References

[1] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems, in
Journal of Cryptology, Vol. 4 No. 1 1991.

[2] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-Round DES. in
Advances in Cryptology: Proceedings of CRYPTO ’92, pp 487-496. Springer Verlag,
1993.

[3] A. Biryukov, C. De Canniere, Linear Cryptanalysis, Encyclopedia of Cryptogrpahy

and Security, (Kluwer), 2004, to appear.
[4] L. Carlitz and S. Uchiyama, Bounds for Exponential Sums, in Duke Mathematical

Journal v. 24, 1957, pp. 37-41
[5] J. Daemen, L. Knudsen, and V. Rijmen, The Block Cipher Square, in Fast Software

Encryptions, E Biham ed., LNCS 1267, SPringer-Verlag, Berlin, 1997
[6] J. Daemen and V Rijmen, AES Proposal: Rijndael, version 2, 1999
[7] J. Gallian, Contemporary Abstract Algebra, 5th edition, Houghton-Mifflin Company,

2002
[8] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-

Wesley, Reading, MA, 1989.
[9] I. N. Herstein, Topics in Algebra, 2nd edition, John Wiley and Sons, 1975

[10] S. Landau, Polynomials in the Nation’s Service: Using Algebra to Design the Ad-
vanced Encryption Standard, American Mathematical Monthly, February 2004, pp.
89-117

[11] M. Matsui, Linear cryptanalysis method for DES cipher, in Advances in Cryptology:

Eurocrypt ’93, T. Helleseth, ed., Springer-Verlag, Berlin, 1994, pp. 386-397.
[12] W. Meier and O. Staffelbach, Nonlinearity criteria for cryptographic functions, in

Advances in Cryptology: Eurocrypt ’89, J.-J Quisquater and J. Vandewalle, eds.,
Springer-Verlag, Berlin, 1989

[13] K. Nyberg, On the construction of highly nonlinear permutations, in Advances in

Cryptology: Eurocrypt ’92, R. Rueppel, ed., Springer-Verlag, Berlin, 1993, pp. 92-98
[14] K. Nyberg, Differentially uniform mappings for cryptography, in Advances in Cryp-

tology: Eurocrypt ’93, T. Helleseth, ed., Springer-Verlag, Berlin, 1994, pp. 53-64
[15] K. Nyberg and L. R. Knudsen, Provable security against differential cryptanalysis, in

Advances in Cryptology - CRYPTO’92, vol. 740, Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Heidelberg, New York, 1993, pp. 566–574.

[16] J. Pieprzyk, Nonlinearity of exponent permutations, in Advances in Cryptology: Eu-

rocrypt ’89, J.-J Quisquater and J. Vandewalle, eds., Springer-Verlag, Berlin, 1990,
pp. 89-92

Department of Mathematics, Western Washington University, Bellingham,

Washington 98226, USA

E-mail address: paul@eigenspace.net

